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Abstract

Significant progress in image segmentation has been
made by viewing the problem in the framework of graph
partitioning. In particular, spectral clustering methods such
as “normalized cuts” (ncuts) can efficiently calculate good
segmentations using eigenvector calculations. However,
spectral methods when applied to images with local connec-
tivity often oversegment homogenous regions. More impor-
tantly, they lack a straightforward probabilistic interpreta-
tion which makes it difficult to automatically set parameters
using training data.

In this paper we revisit the typical cut criterion pro-
posed in [1, 5]. We show that computing the typical cut is
equivalent to performing inference in an undirected graph-
ical model. This equivalence allows us to use the power-
ful machinery of graphical models for learning and infer-
ring image segmentations. For inferring segmentations we
show that the generalized belief propagation (GBP) algo-
rithm can give excellent results with a runtime that is usu-
ally faster than the ncut eigensolver. For learning segmen-
tations we derive a maximum likelihood learning algorithm
to learn affinity matrices from labelled datasets. We illus-
trate both learning and inference on challenging real and
synthetic images.

1. Introduction

Many authors have pointed out that the problem of im-
age segmentation can be formulated as a graph partitioning
problem (e.g. [2, 8, 11, 9]). In the typical conversion ev-
ery pixel corresponds to a node in the graph and pixels are
connected to nearby pixels with a weighted edge, where the
weight often depends on the similarity of a local image fea-
ture at the two pixels. Segmenting the image is equivalent
to finding a partition of the graph vertices.

Figure 1. The problem with minimal cut segmentations. The
trivial segmentation shown on the right has lower cut value than
the desired segmentation shown in the middle. Normalized cut and
typical cut are two criteria that avoid these trivial segmentations.

How would we define a good segmentation? Wu and
Leahy [11] suggested the minimal cut criterion. Define:
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where � �!�"	#� 
 is the affinity between node � and � in the
graph. The minimal cut criterion finds segmentations that
minimize ���������
	���
 .

The advantage of using the minimal cut criterion is that
the optimal segmentation can be computed in polynomial
time. A disadvantage, pointed out by Shi and Malik [9], is
that it will often produce trivial segmentations. For exam-
ple, since the cut grows linearly with the number of edges
cut, a single pixel cut from its four nearest neighbor will of-
ten have a lower cut value than a large foreground separated
from background. Figure 1 shows an example.

In order to avoid these trivial segmentations, Shi and Ma-
lik suggested the normalized cut (ncut) criterion:

$ ���%���&�'	���
�� ���%���&�'	���
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where (-)*)2+-�&�'	".�
��43 � 3 ����� � ����	�� 
 .
Since (-),),+-�&�'	�.�
 is related to the size of group � , the

Normalized cut criterion directly penalizes partitions where
one of the groups is small. Thus unlike the minimal cut
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criterion, a segmentation of a single, noisy pixel from the
entire image will, in general, not be optimal.

Minimization of the ncut criterion is NP Complete but
Shi and Malik showed that an approximate solution can
be found by computing the eigenvectors of the matrix$ ���������	� � ���
���	� , where � is a diagonal degree ma-
trix � �!�"	 � 
 � 3 � � �!�"	�� 
 .
1.1 Typical cuts

The typical cut criterion avoids trivial segmentations us-
ing a rather different method. The criterion was first in-
troduced by Blatt et al. [1] in the framework of statistical
physics, and was reformulated by Gdalyahu et al. [5] in
terms of graph partitioning and image segmentation. Un-
like most graph partitioning algorithms, this one is directly
based on a probability distribution over partitions. For ex-
ample, Blatt et al. define a probability distribution over pos-
sible partitions by:��
 �&�'	���
 � ���� ��������� ��� ��� �	� (3)

where � is a “temperature” parameter that serves as a free
parameter.

Using this probability distribution, the most probable
partition is simply the minimal cut. Thus performing MAP
inference under this probability distribution will still lead
to trivial segmentations. However, as pointed out by [1, 5],
there is far more information in the full probability distri-
bution over partitions than solely in the MAP partition. For
example, consider the pairwise correlation � ���"	#� 
 defined
for any two neighboring nodes in the graph as the probabil-
ity that they belong to the same segment:

� ���"	#� 
�� ���� �
��
 �&�'	���
����! #" ����	��%$��'	���
 (4)

with � �! #"1�!�"	#�%$��
	���
 defined as
�

iff �'& � and �(& �
or �)& � and �*& � .

Referring again to the single pixel in figure 1, while that
pixel and its neighbors do not appear in the same segment
in the most probable partition, they do appear in the same
segment for the vast majority of partitions. Thus we would
expect � �!�"	#� 
,+ �.-0/

for that pixel and its neighbors.
Gdalyahu et al. defined the typical cut partition as the one

defined by the connected components of the graph where
all edges for which � �!�"	�� 
21 �.-3/

have been removed.
Gdalyahu et al. showed encouraging results on image seg-
mentation problems using this criteria.

In summary, both the normalized cut and the typical cut
criteria are promising, principled approaches to segmenta-
tion. However, while normalized cut has been used widely
for many image segmentation problems, the typical cut has
not. Mostly this is due to algorithmic considerations. Just

as exact minimization of the normalized cut criterion is NP
complete, exact calculation of � ����	�� 
 (equation 4) is expo-
nential in the size of the image. While efficient approximate
algorithms for normalized cut are available through eigen-
solvers, to this day, there has been no similar algorithm for
typical cuts. Both [1, 5] used sophisticated stochastic algo-
rithms whose behavior for finite samples is difficult to an-
alyze. In fact, the problem of determining the equilibrium
distribution over segmentations from which the algorithm
used in [5] samples from, is an open one.

In this paper, we show an equivalence between calcu-
lating typical cuts and inference in an undirected graphi-
cal model. This equivalence allows us to use the power-
ful machinery of graphical models for inference and learn-
ing. For inference, we show that generalized belief propa-
gation (GBP) leads to a simple, deterministic segmentation
algorithm whose run time is usually faster than the eigen-
solver used in ncuts. For learning, we derive a maximum
likelihood algorithm to learn affinity matrices from labeled
datasets. We illustrate both inference and learning on chal-
lenging real and synthetic images.

2 Typical cuts and graphical models

This paper is based on the observation that equation 3
defines an undirected graphical model and hence algorithms
for approximate or exact inference in graphical models can
be used to calculate � �!�"	#� 
 and can also be used to learn
affinities.

An undirected graphical model with pairwise potentials
(see [13] for a review) consists of a graph 4 and potential
functions 5 � � �76 � 	�6 � 
 such that the probability of an assign-
ment 6 is given by:�8
 �96�
 � ��;:< � �>= 5 � � �76 � 	�6 � 
 (5)

where the product is taken over nodes that are connected in
the graph 4 .

To relate this to typical cuts we first define for every par-
tition �&�'	���
 a binary vector 6 such that 6��!� 
 �#? if �@& �
and 6 �!� 
 � �

if �8& � . We then define:

5 � � �96 � 	�6 � 
 �BA � � ��CD� �!� ��� ���� ��CE� ��� ��� �	� � F (6)

Observation 1: The probability distribution (equation 3)
is equivalent to that induced by a pairwise undirected graph-
ical model (equation 5) whose graph 4 is the same as the
graph used for graph partitioning and whose potentials are
given by equation 6.

This equivalence described above, holds for any number
of segments G . Let ��� � 	�� � 	IHJHIH�	��LK 
 be a partitioning of the
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graph into G segments. Define ��������� � 	�� � 	JHJHIH��LK 
 in direct
analogy to equation 1, and:��
 � ��� � 	�� � 	JHJHIH 	��!K 
�� �� � ���� ������� � � � ����������� � ����� (7)

In the equivalent graphical model formalism, 6 is no
longer a binary vector but rather takes on G possible discrete
values and the potentials are analogous to equation 6 with

�
along the diagonal and � ��CD� �!� ��� ��� in all of the off diagonal
elements. The graphical model defined this way defines a
probability distribution over q-way cuts that is equivalent to
equation 7.

2.1 Inferring image segmentations using GBP

The observation means that algorithms for approximate
inference in graphical models can be used to devise a typi-
cal cut algorithm. We used the generalized belief propaga-
tion (GBP) ( [13]) algorithm which has been shown to give
excellent results on similar problems. We refer the reader
to [13] for a full description of the GBP algorithm.

Specifically, the GBP typical cut algorithm is given an
affinity matrix � ���"	#� 
 between all neighboring pixels in the
image, and does the following:

1. Construct a graphical model with potentials given by� ��CE� ��� ��� �	� in the off diagonal terms and
�

for the di-
agonal terms. (see eq 6)

2. Use generalized belief propagation to compute
marginal probabilities over pairs of adjacent pixels	 � � �76 � 	�6 � 
 . Derive � ���"	#� 
 from these marginal prob-
abilities using:

� ����	�� 
�� �

���
�
��

	 � � �96 � 	�6 � 
 (8)

3. Remove from the graph any edges for which � ���"	#� 
 1�.-3/
and find the connected components of the graph.

We now give the specific GBP updates for the problem
of image segmentation. Our input is a 2D grid in which
each pixel is connected to its four nearest neighbors. The
algorithm described here is called the “two-way” GBP al-
gorithm in [12].

To apply GBP to our problem, one first forms a region
graph. In our case, this graph contains all quartets of neigh-
boring nodes and all pairs of neighboring nodes. In general,
each quartet is connected to � pairs and each pair is con-
nected to two quartets. Figure 2 shows a small ����� grid
and a portion of the associated region graph. In the general
GBP algorithm for 2D grids, there will also be regions for
single pixels, but due to the symmetry of the potentials in
our problem, they can be ignored.
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Figure 2. a. A small ����� image. b. A portion of the associ-
ated region graph. In general all quartets of neighboring pixels are
connected to four pairs of pixels and all pairs are connected to two
quartets. GBP passes messages along both directions of the graph.

Along each edge in the region graph, messages are
passed in both directions. These messages are probability
distributions over pairs of pixels. At every iteration, the
message sent by a node in the region graph is updated based
on the messages it received at the previous iteration. When
all messages have converged, every pair of nodes forms a
“belief”

	 � � �96 � 	�6 � 
 : an approximation to the marginal prob-
ability of pixels 6 � and 6 � .

The message updates involve multiplying and summing
other messages. We give the update rules for a spe-
cific pair and quartet. All other message updates are
identical up to a permutation. Referring to figure 2 we
denote by � ������� �	� �96 � 	�6 �	� 
 the message that the quar-
tet � � ��� 	 �-	 � ? 	 � � 
 sends to the pair �!� 	 �3� 
 and by
� � � �	� � � �76 � 	�6 �	� 
 the message that the pair �76 � 	�6 �	� 
 sends
to the quartet � � �!� 	#" 	 � � 	 ��/ 
 .

The update rules are:

� ���$� � ��� �76 � 	�6 �	� 
&% 3 
�' � 
 �)( � �+* � �-, � � �76 * 	�6 �., 
H �+* � � � � �76 * 	�6 � 
 � �., � ��� � � �96 �-, 	�6 �	� 
�

� � � �	� � � �76 � 	�6 �	� 
&% � ���$� � ��� �76 � 	�6 �	� 
 5 ��� �	� �96 � 	�6 �	� 
	 ��� �	� �76 � 	�6 �	� 
 % � ������� �	� �96 � 	�6 �	� 
 � �/�$� � �	� �76 � 	�6 �	� 
H 5 ��� �	� �96 � 	�6 ��� 


In a simple implementation of the above algorithm, each
message is a G0� G matrix explicitly representing the joint
probability of a pair of pixels. For example � ���$� � �	� ex-
plicitly represents the joint labelings of pixels � and

�3�
.

However, due to the symmetry of the potentials, each such
matrix actually only contains two distinct values: one along
the diagonal (corresponding to the pairs where 6 � � 6 ��� )
and another off the diagonal (corresponding to pairs where6 ��1�26 �	� ). Thus each vector of probabilities can be repre-
sented by a single scalar number (e.g. the ratio of the prob-
abilities of 6 � � 6 ��� and 6 �+1� 6 �	� ). By taking advantage
of this scalar representation, we can rewrite the algorithm
in the following way.

Assume the message �32 �$4 �76 � 	�6 � 
 is represented by
�

along the diagonal, and a certain value 5 � � in all off diagonal
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elements. Hence the update rule for � ���$� � ��� �76 � 	�6 ��� 
 is
given by 5 ��� �	� � $ " ��� �	� - " � � ��� 1

where" � � ��� � � / � G�� � 
�H � 5 * � � H 5 �-, � ��� / 5 * � �-, H 5 �-, � ���
/ 5 * � � H 5 * � �-, / � G�� / 
�H 5 * � � H 5 * � �-, H 5 �-, � �����$ " � � ��� � 5 * � � / 5 �-, � �	� / � G�� / 
�H 5 * � � H 5 �., � �	�
/ 5 * � �-, H � � / � G�� / 
�H 5 �-, � �	� / � G�� / 
�H 5 * � �
/ � � G�� / 
 � / G�� � 
�H 5 * � � H 5 �-, � ��� �

Since the potentials 5 � � �76 � 	�6 � 
 are also governed by a
single parameter, 5��� � , the ’ 5 ’ for � � � ��� � � �76 � 	�6 ��� 
 is sim-
ply 5 ��� �	� H 5��� � �	� . The update rule for

	 � � ��� �76 � 	�6 �	� 
 is also a
multiplication of the three corresponding 5 ’s.

For a given � �!�"	#� 
 the algorithm has a single free pa-
rameter � . This parameter implicitly defines the number
of segments in the final segmentation. Note that the final
outputted partition may contain any number of segments,
regardless of G . For �
	 ? all the probability mass in
equation 7 is centered on the solution where all entries of6 are identical and thus the algorithm returns one big seg-
ment. For ��	
� the probability mass in equation 7 is
uniformly distributed and thus � �!�"	#� 
 approaches

�.- G and
the algorithm returns many small segments.

Note that every iteration of the GBP algorithm is linear
in the number of edges in the graph, or equivalently, for
nearest neighbor connections, linear in the number of pix-
els. We are not aware of a bound on the number of iterations
needed until convergence but we found that for half sized
images (

/ � ?06�� �3? ) � ? iterations were sufficient. Also note
that while our algorithm deals with probabilities it is a de-
terministic algorithm: unlike former typical cut algorithms
which are stochastic algorithms, two runs of the GBP typi-
cal cut algorithm with the same input will give exactly the
same answer.

2.2 Learning image segmentations using maxi-
mum likelihood

Many authors have pointed out that a major problem in
segmentation using graph partitioning is how to define the
affinities between pixels (e.g. [4]). There are many differ-
ent gestalt cues for segmentation including color, texture,
contour etc., and different weights for these cues will lead
to very different segmentations. We would like to use a la-
beled dataset to learn the “right” affinities.

More specifically let us assume the “correct” affinity is
a linear combination of a set of known affinity functions��� 2���� 2 
 � . Hence the affinity between neighboring pixels �

1 ����� ��� denotes the sum of over all assignments in which � ��� � ��� ,
and  �!��� ��� denotes the sum of all assignments in which � �#"� � ��� . It
should also be noted that we assume that $&%0�

and � , is defined by: � �!�"	#� 
 � 3 � 2 
 �(' 2 � 2 ����	�� 
 . The
“basis” affinity functions

� 2 can either correspond to differ-
ent cues (in which case the final affinity is a weighted lin-
ear combination of cue affinities) or to nonlinear functions
of affinities (in which case the final affinity is a nonlinear
combination of cue affinities).

In addition assume we are given a labeled training sam-
ple (similar to the Berkeley segmentation database used
in [4]) in which images are segmented by hand. For each
image in the training set, we can compute the basis affinity
values

� 2 ����	�� 
 between neighboring pixels. Our goal is to
estimate the affinity mixing coefficients ' 2 .

As we now show this problem can be solved using the
graphical model defined by the typical cut probability dis-
tribution (Equation 7). The probability of the partition 6 is
defined

) �76�
 � �� � ��������� 
 � � �� � � 3+* � ��, � � �.- � 
 � � 
 � �7� CD� �!� ���
� �� � ' 
 � � 30/132

�54
1�6 7�8:9;1 � 
 �

Where we have defined: <>=@?BA 2 �76 
 � 3 < � �>= � � �!C �76 � �6 � 
�
 � 2 ���"	#� 
 . <>=D?EA 2 �96�
 is the cut value defined by 6 when
only taking into account the affinity function

� 2 , hence it
can be computed using the training sample.

Differentiating the log likelihood with respect to ' 2
gives the familiar exponential family equation:FHGJI ) �76�
F ' 2

� ��<>=D?EA 2 �96�
 / 1 <>=D?EA 2 + 4 (9)

Equation 9 gives an intuitive definition for the optimal ' :
the optimal ' is the one for which 1 <>=@?BA 2 + 4 � <>=D?EA 2 �76 
 .
That is, the optimal ' is the one for which the expected
values of the cuts for each feature separately, match exactly
the values of these cuts in the training set.

Since we are dealing with the exponential family, the
likelihood is convex and the ML solution can be found us-
ing gradient ascent. To calculate the gradient explicitly, we
use the linearity of expectation:1 <>=D?EA 2 + 4 � �< � �>= 1 � � �KC �;L � � L � 
 + 4 � 2 �!�"	�� 


� �< � �>= � � �D� ���"	#� 
 4 
 � 2 ���"	#� 

Where � ���"	#� 
 4 are the pairwise correlations for given val-
ues of ' .

3 Experimental results

3.1 Inference results

By using GBP to compute the pairwise correlations� ����	�� 
 we obtain an approximation of the true pairwise cor-
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relations. In order to evaluate the quality of these approx-
imations we compare the correlations � �!�"	�� 
 calculated us-
ing an extensive MCMC sampling procedure [10] to those
calculated using GBP with the clusters being four neigh-
boring pixels in the graph. Figure 3 shows results of GBP
approximations for a �3?36 �3? 2D uniform grid. The clique
size in a junction tree is of order

/ � , and hence exact in-
ference is impossible. GBP converged in only

� ? iterations
and gives an excellent approximation.
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Figure 3. Scatter plot of pairwise correlations in a ��������� grid,
using MCMC [10] and GBP. Each dot corresponds to the pairwise
correlation of one edge at a specific temperature. Notice the excel-
lent correspondence between GBP and MCMC

Figure 4(b) presents a comparison of the MCMC corre-
lations with those calculated by GBP on a real

��/ ? by " ?
image (see Figure 4(a)) with affinity based on color simi-
larity.
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Figure 4. (a) Original image. (b) Scatter plot of pairwise cor-
relations in the image using MCMC [10] and GBP, at one specific
temperature. Each dot corresponds to one pair of pixels.

We now compare ncuts and GBP typical cuts on real and
synthetic images. Both algorithms received as input exactly
the same affinity matrix � �!�"	#� 
 . Every pixel was connected
to its 4 nearest neighbors, and the weight was only a func-
tion of the absolute difference between the RGB values in
the two pixels:

� ���"	#� 
�� �
� / � �	� � 	 5 � 	 	 � 
 � �	� � 	 5 � 	 	 � 
 � �

We should emphasize that these affinities are certainly
not the optimal affinities to use for image segmentation:

they only take into consideration color and not texture or
contour and the radius of connections is very small. Our
goal here was not to build a state-of-the-art segmenter but
rather to understand the differences between the various al-
gorithms, and to demonstrate their capabilities. Undoubt-
edly, both ncuts and GBP typical cut would improve with
better � �!�"	#� 
 and with higher neighbor connectivity.

For GBP typical cut we chose G � � for all images and
the temperature was adjusted manually to achieve the de-
sired number of clusters. For ncuts we used the 
 -way al-
gorithm described in [9]. Specifically, we calculate the 

largest eigenvectors of the matrix � �
���	� � �������	� and em-
bed every pixel in a 
 dimensional vector space. We then
ran the Kmeans algorithms in the vector space to give the
Normalized cuts segmentation. We ran Kmeans

� ? times
and chose the clustering that gave lowest distortion. The
free parameter 
 was adjusted manually to achieve the de-
sired number of clusters.

When running Both ncut and GBP typical cut on the
noisy edge image described in the introduction (Figure 1)
both algorithms avoid the trivial segmentation of the mini-
mal cut algorithm and output the correct segmentation.

GBP−cut intial potentials GBP−cut pairwise correlations

GBP−cut intial potentials GBP−cut pairwise correlations

GBP−cut intial potentials GBP−cut pairwise correlations

Figure 6. A comparison of the edge probability maps before
and after running the GBP typical cut algorithm. Edges in the graph
appear in locations where �
��������������� � . Note that edges that do
not denote a large region but have a strong gradient (e.g. the ripples
on the waves) have �
��������������� � and therefore disappear from the
resulting edge map.
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T−cut T−cut clusters N−cut N−cut clusters

T−cut N−cut N−cut clusters

T−cut T−cut clusters N−cut N−cut clusters

(a) (b) (c) (d)
Figure 5. A comparison of segmentation results using GBP typical cut (columns (a) and (b)), and Normalized cut (columns (c) and (d). Both
algorithms used the same affinity matrices. (a) and (c) show the 15 largest cluster boundaries superimposed on the original image.(c) and (d) show a
gray level map of the 15 largest clusters. As may be seen, the Normalized cut algorithm tends to split large homogeneous regions.

Figure 5 shows the results 2 on three real images taken
from [6]. We emphasize that we chose images that con-
tain large homogeneous regions to highlight the distinction
between the two algorithms. It is known that ncuts with
local connectivity will tend to favor splitting homogeneous
regions (e.g. [3]). In the appendix, we analyze ncuts and
typical cuts for a simple synthetic image with homogenous
regions and show that typical cuts will not oversegment the
large homogenous region. What happens in real images
with homogenous regions ?

As shown in figure 5, ncuts indeed tends to favor splitting
of large homogeneous regions while the typical cut does
not. At the same time, the GBP typical cut algorithm also
outputs some small noisy clusters which the ncut algorithm
avoids. Which of these two errors is more important is, of
course, application dependent. It can be seen that, the seg-
mentations obtained by using the GBP typical cut are more
meaningful: one can recognize the airplane, palm tree and
eyes in the second column of figure 5 but not in the fourth
column. It should be noted that for these images, the GBP
implementation was an order of magnitude faster than Mat-
lab’s eigs eigensolver.

To get a better understanding of how GBP typical cut
works, we display in figure 6 the optimal edge guesses be-

2We thank Marshall Tappen for providing a C++ GBP implementation.

fore and after running GBP. The “before” column shows a
white pixel wherever the probability of an edge based only
on the local color gradient is greater than ?�� � . The “after”
column shows a white pixel whenever � ���"	#� 
 calculated us-
ing GBP is greater than ?�� � . Note that edges where there
is a significant color gradient but do not denote a boundary
between two large regions are suppressed (e.g. the ripples
on the waves).

3.2 Learning results

We experimented with the ML learning algorithm on the
problem of ignoring shadows. When one uses color simi-
larity between pixels, the largest differences between pixels
may be due to shadows. Whether we want our algorithm
to indeed segment based on shadows or ignore the shadows
is, of course, application dependent. This preference can be
communicated using a training set: when the training set
ignores shadows we would like our algorithm to learn to
ignore them, but if the training set segments based on shad-
ows, we would like the algorithm to do the same.

Fig 7 shows a synthetic example. There is one training
image (fig 7a) but two different segmentations (fig 7b,c).
The first training segmentation is based on the shadows and
the second training segmentation ignores shadows.
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The three affinity functions used here are based on inten-
sity differences in the three � 	 4 	�� channels. The affinity
is an affine function of the intensity difference. We used
gradient ascent as given by equation 9. Figure 7c shows
a novel image and figures 7d,e show two different pair-
wise correlations of this image using the learned ' . Indeed,
the algorithm learns to either ignore or not ignore shadows,
based on the training set.

Figure 8 shows results on real images. For real images,
we found that a preprocessing of the image colors is re-
quired in order to learn shadow-invariant linear transforma-
tion. This was done by saturating the image colors. The
training segmentation (shown in figure 8a-c) ignores shad-
ows. On the novel image (shown in figure 8d) the most
salient edge is a shadow on the face. Nevertheless, the seg-
mentation based on the learned affinity (figure 8e) ignores
the shadows and segments the facial features from each
other. In contrast, a typical cut segmentation which uses a
naive affinity function (combining the three color channels
with uniform weights) segments mostly based on shadows
(figure 8f).

(a) (b) (c)

(d) (e) (f)

Figure 7. A synthetic example for learning the affinity func-
tion. The top row presents the training set: The input image (a),
the clusters of the first experiment (b), and the clusters of the sec-
ond experiment (c). The bottom row presents the result of the
learning algorithm: The input image (d), the marginal probabili-
ties � ��� � � � (Eqn. 4) in the first experiment (e) and the marginal
probabilities � ����� ��� in the second experiments(f). The illustration
is better viewed in color.

4 Discussion

The introduction of graph partitioning techniques into
image segmentation has been tremendously helpful. In par-
ticular, the ncuts algorithm has given excellent performance
over a wide range of images. This is due both to the cri-
terion which avoids trivial segmentations and to the simple
eigenvector algorithm. In this paper we have presented a
new algorithm: GBP typical cut which in terms of complex-
ity is usually faster than the eigenvector ncut. We showed

(a) (b) (c)

(d) (e) (f)

Figure 8. Learning a color affinity function which is invariant
to shadows. The top row shows the learning data set: The input
image(a), the pre-processed image (b) and the clustering to regions
(invariant to shadows) (c). The bottom row presents, from left to
right, the pre-processed input image for the classification stage (d),
an edge map produced by learning the shadow-invariant affinity (e)
and an edge map produced by a naive affinity function, combining
the 3 color channels with uniform weights (f). The edge map was
computed by thresholding the pairwise correlations p(i,j) (Eqn. 4).
The illustration is better viewed in color. See text for details.

that the algorithm avoids the trivial segmentations of min
cuts but also avoids the oversegmentation of homogeneous
regions that may plague ncuts. Another important advan-
tage of the GBP typical cut, is that it comes with a simple,
probabilistic framework, which naturally allows using vari-
ous simple algorithms for estimating the model parameters
as we have demonstrated in this paper.

Although promising results have been presented for the
problem of learning affinities from ground truth segmen-
tations in the ncut framework [7, 4] it is far from obvi-
ous how to change � �!�"	�� 
 so that the ncut segmentations
will give boundaries that agree with the human boundaries.
This is true even when one adopts the random walk view of
ncuts proposed in [7]. In contrast ML estimation for undi-
rected graphical models is very well understood and gives
a straightforward method to learn affinity matrices from la-
beled data.

Our current work of maximum likelihood estimation for
the affinity matrix � �!�"	#� 
 is just an example of the type
of research directions that open up once we have a graph-
ical model and a criterion that is optimal for segmentation
given that model. We view the GBP typical cut algorithm as
a bridge between the image segmentation problem and the
powerful machinery of graphical models.
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A Appendix: Analytical comparison on im-
balanced segmentations

In this section we analytically compare the performance
of optimal ncuts to optimal typical cuts on a class of im-
balanced images with nearest neighbor connectivity. It is
known that ncuts will have trouble under these conditions
(e.g. [3]) but will these problems also plague typical cuts?

Suppose our input image is as shown in figure 9. There
is a single, square figure � of size � ��� embedded in a
uniform background � of size �3��� . Assume � �!�"	�� 
�� �
for any two neighboring pixels with the same intensity and

� �!�"	#� 
 � �.- � for two neighboring pixels across an inten-
sity boundary. Consider segmenting the background into
two regions �'	�� then we have (ignoring boundary effects):

$ ���%���&�'	���
 � � H �
��� � -3/ / � H �

��� � -0/
$ ������� � 		�1
 � � � H ��

� � � / � � H ��
� � � � � � � 


Observation 1: For � +'+ � optimal Normalized cut
with these weights will prefer cutting the background into
equal pieces over segmenting the figure from the back-
ground.

The proof is straightforward: for a fixed � as � grows$ ���������
	���
 will approach zero while
$ ���%��� � 	��1
 will ap-

proach
�.- � � .

C 

A B 

Figure 9. A simple image on which we can calculate the perfor-
mance of optimal Normalized cuts and typical cuts when both al-
gorithms have nearest neighbor connectivity. As the size of the im-
age grows, optimal Normalized cuts will prefer splitting the back-
ground in half instead of segmenting the figure from ground. Typi-
cal cuts will always prefer segmenting the figure from ground.

How dependent is this result on the nearest neighbor con-
nections? Note that as long as the number of connections of
each node is bounded above (or even grows sublinearly with
� ) the same argument holds. Note also that this result is not
restricted to normalized cuts. It also holds for ratio cuts [2]
(where one minimizes ���%���&�'	���
 -�� � � 5	� ����� 
 ) as long as
weight � increases with the number of elements in � .

Observation 2: As � grows optimal typical cut will never
prefer to split the background into two rather than segment-
ing the figure from the background.

To prove this consider a point � � & � and a neighbor-
ing point � � & � . Denote their correlation as a function
of � by � ��� � 	#� � $ � 
 . Similarly, consider a point ��
 & ��
� & � and denote their correlation by � �!��
 	#�
�'$ � 
 . What
happens to these correlations as � grows? Note that as we
increase � the local subgraph around these 4 points does not
change: neither the topology nor the potentials. We are sim-
ply adding nodes to the graph that are increasingly far away
from these 4 points. Since the additional node are increas-
ingly far away from the 4 points, their influence decreases
as � increases and � �!� � 	�� � $ � 
 ,� ��� 
 	#� � $ � 
 will tend to an
asymptotic value that is independent of � .
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